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A MATRIX METHOD FOR THE DETERMINATION OF THE

NATURAL VIBRATIONS OF FREE-FREE UNSYMMETRICAL BEAMS

WITH APPLICATION TO LAUNCH VEHICLES

By Vernon L. Alley, Jr., and A. Harper Gerringer

SUMMARY

The equations for determining the undamped natural vibrations of

free-free unsymmetrical beams and launch-vehicle structures are developed

herein. The analysis treats a continuous free-free system as an equiv-

alent discrete-mass system of a finite number of degrees of freedom. The

flexure-load relationships are equated by influence coefficients which

are derived in the present paper by considering both flexure and deflec-

tions from local rotations. Matrix notations are used throughout the

paper because of their suitability to the analysis of dlscrete-mass

systems. Equations are developed for the dynamic equilibrium of the

system, the natural frequencies and mode shapes and their first deriva-

tives, the bending moments associated with the modes, and the influence

coefficients. The results of an investigation on the accuracy of the

natural frequencies and mode shapes in terms of the number of discrete

masses employed in the solution are also included. The procedures are

illustrated by a numerical analysis of a uniformbeam, and the applica-

tion of the matrix procedure to a typical launch vehicle is given.

INTRODUCTION

The undamped free-free natural modes of a structure have a wide

variety of uses in engineering problems. The orthogonal properties of

the mode shapes make them desirable functions for use in series solu-

tians involving generalized coordinates, widely known as "modal form

solutions." A knowledge of the time history of the natural frequencies

of a spln-stabilized rocket vehicle is essential to the design of the

spin program and is of value in establishing proper instrumentation for

monitoring environmental responses. Modal information is also essen-

tial to proper positioning of guidance sensing devices and for investi-

gating the stability characteristics of vehicles with closed-loop con-

trol systems.
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The transient mass and structural characteristics of a typical
multistage rocket vehicle require that the natural-vibratlon character-
istics of the vehicle be knownat least for the Ignition and burnout
times of each stage of flight and frequently for other conditions such
as those at a_ach numberof i, maximumdynamic pressure, and minimum
lift. For transient wind-response studies considering variable coeffi-
cients in the equations of motion, it is frequently required that the
natural modesand their related properties be defined as often as
i0 times during first-stage burning. These stringent requirements
involve substantial engineering effort and Justify the development of
computing techniques adaptable to automatic digital computers.

Considerable work has been done on the problem of computing natural
vibrations of beams, and a wide variety of methods are available for
accomplishing such ends. However, none of the published procedures ade-
quately and conveniently satisfy the need for volume production of modal
data for launch-vehicle structures.

It is the purpose of this paper to present a solution of the natural
vibrations of structures which satisfies the specific needs of the rocket
vehicle designer. The procedure consists of a matrix formulation gen-
erally similar to the numerical process outlined in reference 1. The use
of matrices permits the coordination of a set of computational stages to
produce a single matrix equation from which the frequencies and mode
shapes of the system can be obtained by application of elementary prin-
ciples of matrix algebra.

The growing importance of aeroelastic behavior and the use of atti-
tude and attitude rate sensing devices in vehicles with control systems
have given rise to the need for the slopes of the natural modeshapes.
The addition of the momentsof the modeswith proper consideration of
their relative magnitudes often provides a convenient way for obtaining
the composite bending momentsof a structure. Consequently, the equa-
tions for the mode slopes and momentsassociated with the various mode
shapes are also developed and presented herein.

The effects of shear deformation and rotary inertia are sometimes
significant in the higher modesof oscillation, but the added complica-
tions and additional parameters necessary to incorporate these secondary
influences are seldom Justifiedand consequently these effects are not
included. The engineer nevertheless should be cognizant of the poten-
tial significance of such omissions in the special cases requiring
extreme accuracy of modedata.

In order to assist the user in selecting the numberof masses
required to yield results to a desired accuracy, data are furnished on
the influence of the numberof discrete masseson the accuracy of the
frequencies and modeshapes of a uniform beam. In order to illustrate
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the matrix operations, a detailed numerical example is furnished for a

uniform beam. For the engineer unacquainted with matrix notations and

methods, the elementary concepts essential to the derivations of this

report are available in a number of texts on matrices such as refer-

ences 2 and 3.

An application of the method to a typical rocket vehicle is pre-

sented to illustrate the input data and to show the typical output.
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SYMBOLS

matrix of equation (i0), in./ib

coordinate in least-error analysis, in.

scaling constant given by equation (18), in.

coordinate in least-error analysis, radians

coordinate to Joint u, in.

sweeping matrix given in equation (19)

modulus of elasticity, lb/in. 2

inertia force of rth mass at rth station, lb

natural frequency of the free-free oscillation, cps

trial column matrix for iterating for the sth mode, in.

moment of inertia of structural cross-sectional area, in. 4

mass moment of inertia about the zero station, lb-in-sec 2

the Jth value at the reference station r

total length of beam, in.

moment of the mass about the zero station, lb-sec 2

bending moment at the sth station, in-lb



Mo end momentin influence coefficient derivations, in-lb

p-1

m total mass of system = _) i mn, lb-sec2/in,j

mn nth discrete mass, ib-sec2/in.

P force in influence-coefficient derivation, ib

p numberof discrete masses in the system

qi reference modedeflection at xi for comparative purposes
by least-square method, in.

radius of gyration of the total mass about the center of
gravity, in.

U strain energy, in-lb

Vo boundary shear force in influence-coefficient derivation, lb

v numberof Joints considered in the structure

L
vi = xi + _ coordinate from left end of uniform beam, in.

X

x

x r

Y

Yr(S)

Yn(S)

8Y i

moment matrix, in.

coordinate along the length of the vehicle, in.

coordinate to the rth station, in.

distance to the center of gravity from the Oth mass, in.

general function of x, units vary

an approximation to the sth mode shape, in.

deflection at xn of the sth natural mode, in.

discrepancy between modes at the ith point determined by the

matrix methods and by exact method

L
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C_r, n
deflection influence coefficient for elastic bending only,

deflection at x = xr due to a unit load at x = xn when

cantilevered at x = O, in./ib

0xr x2_r = --Eldx, in./lb

7 rotation at a joint due to a load Pn at Xn, radians

deflection influence coefficient considering elastic rota-

tion of joint u only, deflection at x = xr due to a

unit load at x = xn when cantilevered at x = O, in./ib

cf error in natural frequencies between matrix method and com-

parative exact solution, percent

Cy
error in mode shapes between matrix method and comparative

exact solution, percent,

mode displacements of comparative exact solution

slope influence coefficient considering elastic rotation of

joint u only; the slope at x = x r due to a unit load

at x = Xn, when cantilevered at x = O, radians/ib

0xr i ib-l_in.-i
dx,

_)r slope at the rth station, radians

8r, n slope at x = xr due to a load P at x = xn when canti-

levered at x = O, considering beam flexure only, radians

Vr,
slope influence coefficient considering beam flexure only,

slope at x = xr due to a unit load at x = xn when

cantilevered at x = O, radians/ib

K u Joint rotation constant for Joint u, radians/in-lb

_ks sth eigenvalue of equation (i0) or equation (20), i/ms2m ,

in./lb-radians 2
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0xr x ib-i_r = dx,

Pr, n
total slope influence coefficient considering both bending

and Joint effects; the slope at x = xr due to a unit load

at x = xn when cantilevered at x = 0, radians/lb

_r, n total deflection influence coefficient considering both

bending and Joint effects, the deflection at x = x r due

to a unit load at x = xn when cantilevered at x = 0,

In./lb

6D circular frequency for natural vibrations of the free-free

system, radians/sec

O,L],E],LJ,L.q,()column, diagonal, square, row, unit,

and transpose matrices, respectively

Subscripts:

i, J, n, r, s,u integers

L
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DERIVATION OF THE EQUATIONS OF MOTION

The derivation of the equations of motion for the free-free struc-

ture including detail developments for determining boundary values, mode

slopes, mode moments, and all necessary influence coefficients is given
inthis section.

General Procedure for a Free-Free Unsymmetrical System

The solution requires that an equivalent system of discrete masses,

such as that illustrated in the following sketch, be devised that will

adequately represent the continuous system. The load-deflectlon charac-

teristics are stated by use of cantilever influence coefficients which

are derived by use of elementary beam-flexural theory for small dis-

placements and wlth appropriate consideration of local Joint rotations.

Second-order effects such as shear deformation and rotary inertia are

not included.
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Fr 8r p-i

0 i i__--__ rth discrete mass of

_ - 11 p masses

18o Ii  natra nod"__ f
position

Xr

Sketch 1

Let Or, n define the deflection at x = xr due to a unit load at

x = xn when cantilevered at x = O. Then the deflection at x r for

a system of p discrete masses can be stated.

p-1

= >' Fn°r,n + eoXr + YoYr

n=l

(1)

For a free-free vibration, the forces Fn are composed only of the

inertial loads which according to the laws of conservation of linear

and angular momentum satisfy the equations

p-1

I Fn = 0 (2)

n=0

p-1

FnX n = 0

n=O

(3)

For steady-state harmonic oscillations at frequency

Fn = mn_2yn (4)

The substitution of equation (4) into equations (i), (2), and (3) yields

p + i equations for p + i unknowns

p-i

Yr = _2 I or, nmnYn + 8°Xr + Yo

n=l

(5a)
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p-i

moY o + _ mnY n = 0

n=l

(5b)

p-i

Z = 0XnmnYn

n=l

(5c)

By changing the n subscripts to r in equations (5b) and (5c), sub-

stituting equation (5a) into the_modified equations in place of Yr,

and introducing the following notations:

p-i

mo+_ mr =m

r=l

which is the total mass of the system_

m_r =M

r=l

which is the moment of the mass about the zero station, and

p-1

_ mrXr 2 = J

r=l

which is the mass moment of inertia about the zero station and since

= 0 by definition, then equations (5b) and (5c) become in matrixSo, n

form

8oM + mYo + _2[1]imr]_r, nlImnl<Yn} = 0 (6)

and

eoJ + MYo + _°2[xJLmr]I_r, nl[mnl<Yn} = 0

i, 2, 3. • P

(7)

L

i

9
5
3



9

L

1

9

3

3

Noting that

M=m_

j = m(}2 + _2)

where: x is the distance to the center of gravity of the system from

the x origin, and

is the radius of gyration of the total mass about the center

of gravity of the system
then with these notations and by solving equations (6) and (7) simultan-

eously for eo and Yo, it is found that

8o - _2m _2_ Xrl[mr__I _ n] m_l(Yn_- TJGI r, (8)

yo : __n2_mml + _2_,2 y,2x2_'I m-_--_I(_r, nl mL'_(Yn_ (9)

By substituting equations (8) and (9) into equation (Sa) and making some

permissible interchanges in subscripts, the desired form of the equa-

tions of motion in matrix notation is obtained as

+_2_2 _,2_(2x_--'rJl_m_---_l[_r, n_ L_-_--I(Yr 1

The solution of equation (i0), which is of the familiar form of an eigen-

value problem, that is_

ks(Yr(S_ = [A] _r(S) (lOa)

will yield the natural frequencies and natural mode shapes of the dynamic

system. The bracketed letter (s) added to the modal column Yr is

henceforth used as needed to designate the particular solution of the

p - 1 possible solutions of equation (lO).
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The basic matrices necessary for generating the A matrix of

E;-equation (lOa) are , , and r,

matrices as well as the necessary parameters, x and r, are computed

readily once the magnitudes and locations of the discrete masses are

established. The major work.in the generation of equation (lO) lies in

developing the _r,n matrix for which detailed considerations are sub-

mitted subsequently.

Boundary Values, Yo and eo

The number of unknown deflections in equation (lO) is p - l, one

less than the number of masses comprising the discrete mass system.

This reduction in order, highly desirable when the modes are computed

manually, is a direct result of choosing the origin of the x coordi-

nate at the end mass. However, by virtue of this choice, the Yo value

is lost from the modal column and must be determined separately. The

value of Yo could be determined from the explicit expression given by

equation (9), but a simpler solution comes from the equilibrium condi-

tion of equation (Sb), which is

p-1

(s) + _ mny n(s) = 0moYo

n=l

Solving for Yo(S) and interchanging the sub script s give s

Yo(S) = m-lo/--_lJL_ <Yr( s_
(ii)

L
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The boundary slope 8o is given by equation (8). Equations (8) andfh(ll)

are the expressions for the boundary values of the problem. The lyrl
_J

column used in both equations is obtained from the solution of

equation (lO).

A Method for Solution of Equation (i0)

It is evident from an inspection of equation (lO) that the A matrix

of equation (lOa) is not a symmetrical matrix, and therefore the method

of solution must be one appropriate to unsymmetrical matrices. Also,
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since the modal column Yr contains only the elements from r = i to

p - 1 and excludes Yo, the conventional orthogonality relationship of

the eigenvectors does not apply, that is, for equation (lO)

r(s r(J l, 2, 3 P

Since these particular characteristics of equation (i0) preclude solu-

tions for the nondominant eigenvalues by many of the conventional pro-

cedures, a detailed explanation follows for the general solution of the

specific problem for both the dominant and nondominant eigenvalues and

eigenvectors. A special orthogonality relationship applicable to equa-

tion (i0) is necessary to the solution and must first be developed.

S_ecial orthogonality relationship.- Multiplying equation (8) by

_i I Xrl and equation (9)by _i_l_ and subtracting the two results from

_ J

equation (I0) yields

kiI_r(i _ -Yo(i)(1 I - eo(i)<xr__ = ISr, nlL_l_r(i_ (12)

Premultiplying this result by LYr(J_L_--_ and noting that from

equation (5c)

give s

By expressing equation (12) in terms of the jth mode instead of the ith,

premultiplying that expression by _r(i _ L-_ , and using the preceding

condition from equation (5c), it follows that
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From equation (ll),

and

yo(j) -

and because of the symmetry of _-_ and _gr, n_

and

_r(i)_L_--_r_ _r,_--_r_Yr(J_ =LYr(J_L_-_r_qr, n__rr(i_

Subtracting equation (13) from (12a) and utilizing the preceding rela-
tionships yields

Yr(i) 0 )(_i- kj)LYr(J)- yo(j_ _ _ = (14

from which it is established when J _ i that

Lyr(J)- yo(JlL_Yr(i)_ = 0 (j , i) (14a)

Equation (14a) is the special orthogonality relationship appropriate to

the solutions of equation (i0).

Iteration solution of e_uation (i0).- A recurrence equation is

developed for an iterative solution of equation (i0) that will converge

to the desired eigenvalue and eigenvector.
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In the solution for the eigenvalues and eigenvectors of equation (i0)

there will be p - i linearly independent eigenvectors of which p - 2

are the flexible mode shapes and one, associated with a zero eigenvalue,

has no physical significance. In the specific application, if repeated

eigenvalues exist they nevertheless will not possess identical eigen-

vectors• The eigenvector associated with the zero eigenvalue is distinct

and can be shown to be

<Yr_h=O = L_-l-l_°r, nl-l_l

Let an approximation _Yr(S)_ to the sth mode be a linear combination

of the actual (p - l) linearly independent eigenvectors of the matrix A;

that is,

_r(S )_ = al_r (i_ + a2_r(2)_ + . . + ap_l_r( p - i)_ (15)

where _r(1)_, _Yr(2) _, _Yr(P - i)_ are n°rmalized eig envectOrs

arranged in a sequence of decreasing magnitude of their eigenvalues,

that is, hl > k2 > h3 " _I_2 > kp-1 and kp_ 1 = 0, and al, a2,

• ap_ 1 are the scaling constants for their respective modes.

Assume that _Yr(1)_ to _r(S- 1)_ and their proportionality con-

stants al, a2, . as_ 1 have been previously determined. Subtracting

the products of known eigenvectors and their scaling constants from the

approximation _r(S)_ to the sth mode gives the following function

(S)_ that is free of the components of the first s - 1 modes:

<hr(s)_ = _r(S!- al_r(1)_ - a2_Yr(2)_ -

as_r( )_ + as+l<Yr(S + 1)_ + •

Premultiplying (16) by the A matrix of equation (10a) and recalling

from equation (lOa)that _Al_r(S) _ = ks_r(S)_, then

(16)
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(l?)

Repeated premultiplication by the A matrix m times results in

IAlm_hr(S)_ = asksm_yr(S)_ + as+lks+lm_(s + l_

+ • . + ap_ikp_im_r(p-1)_ (17a)

Since ks > ks+l > • • > _p-1 and if the process is continued suffi-

ciently, as times the mth power of _s will predominate over all

other terms on the right-hand side of equation (17a). By continuing

the premultipllcation by the A matrix until the sum of the s + 1 to

the p - 1 terms becomes insignificant in comparison with the s term,
then it can be stated that

_Alm_r(S)_ = asksm_r (s)_ (17b)

proven that by repeated premultiplicatlon by IAI ofIt is thus
f _ LD

an assumed function of the characteristics of lhr(S)l 3 the process will

converge on the modal column Yr(S) times a scalar asZs m. Normalizing

the results of (17b) by dividing by as_s m and using the normalized

column _s a final trial eigenvector results in the desired solution

EAI _r(S_ = _s_r(S)_

The scalar quantity as_s m resulting from m repeated premultlplica-

tion of _hr(s)_ by IAI is generally an enormously large number and

leads to cumbersome numerical operations. This problem can be allevl-

ated by frequent normalizing of the asksm_yr(S)l column as needed

J

L
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3
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since it does not alter the convergence of the process. The preceding

proof of convergence to the dominant eigenvector is similar to the pro-

cedure used in reference 4.

The function _hr(s)_ of equation (16), shown previously to con-

verge on (Yr(S)_, m_ust n_ow be developed in detail._ _ The column_ _yr(

in the function lhr(S)Ij is an estimated expression for the sth mode s)_

k J
and may be chosen quite arbitrarily, yet a good estimation is advan-

tageous since it will greatly increase the rate of convergence of the

iteration process. The eigenvectors _r(1)_, <yr(2)_, (Yr(S - l)

must have been determined before thr(S)} can be evaluated. The al,

a2, . as_ 1 coefficients remain to be determined which can be done

by use of the special orthogonality condition of equation (14a).

By multiplying equation (15) by lYr(i) - Yo(i_L _ and observing

the orthogonality relationship of equation (14a), it is found that

ai - LYr(i) - Y°(i_L_--_r_{Yr(s_ (18)

LYr (i)- Yo(i_ L_rl IYr( i)_

Substituting expressions of the type of equation (18) into the equations

for lhr(S)l_ equation (16), for values of i from 1 to s- 1 yields

- m Yr(S )

LYr(s i) - Yo(S - l_ L_(Yr(S - i) 1 _ _

(19)



16

Premultiplying equation (19) by the IAI matrix results in a supplemen-

tary equation to (lOa) that will converge upon the nondomi_nant sth eigen-

vector upon repeated premultiplication by the product IAIID(s)_, thus

r = i, 2,3 • • . p- l_

_\

yr(s = 0) = 0 J (20)

where _(s I is the square matrix of equation (19) and is a special

sweeping matrix. Equation (20) for s = i degenerates to equation (lOa),

and consequently it can be seen that equation (20) is a general expression

from which both dominant and nondominant solutions for the natural modes

and frequencies can be obtained.

L
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Mode Slopes

Let Pr, n be the slope at x = x r due to a unit load at x = xn

when cantilevered at x = O, then, the total slope 8r at the rth sta-

tion can be expressed as

<er_ = e_l} + _Pr, n_F t

Substituting equation (8) for eo and equation (_) for Fr yields

(21)

which relates the desired slopes explicitly to the modal column of

equation (lO).

Mode Moments

By letting Ms equal the bending moment at the sth station of a

natural mode, then

S S

r=O r=l
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Substituting equation (4) for Fr and equation (ii) for

expressing in matrix form gives

where

Yo and

x s - x r is replaced by zero when xr _ x s for s = i, 2, 3,

p - 1.

When considering the conditions imposed, the x s - x r matrix

becomes a triangular matrix as illustrated

0 0 0

x2 - xI 0 0

x 5 - xI x 3 - x 2 0

x4 - xI x4 - x2 x4 - x 3

x5 - x5

Xp_ 1 - x1
m

xp_ 1 - x2 Xl_l - x 3

matrix is

xI x1

x2 x2

x3 x3

x1

x2

• 0

• 0

• 0

0

• 0

x 1

x2

x3
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Subtracting the

results in

matrix from the
X s - Xr_

conditional matrix

xI xI xI xI x1

xI x2 x2 x2 x2

xI x2 x 5 x_ x 5

xI x2 x5 x4 x4

x I x 2 x 3 x4

x1

x2

x3

x4

Xp-2

• p - l) (22)

Equation (22) conveniently expresses the bending moment at any station in

the system except station zero. For a free-free system such as the one
r_

the moment at the zero station is zero. The IXlbeing investigated,

_J

matrix is a symmetrical matrix where all elements to the right and below

the diagonal have the same values as their diagonal values; therefore,

it is an easy matrix to generate.

L
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Deflection Influence Coefficients

The deflection influence coefficient Or, n is considered as being

composed of two contributing parts: the part cur,n due to elementary

beam flexure only, and the part 8r, n due to local rotation.

Deflection influence coefficients due to beam flexure only.- Let

at, n be the deflection at x = x r due to a unit load at x = xn con-

sidering elementary beam flexure only and cantilevered at x = 0. Then

consider the following sketch:
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Sketch 2

Then, from sketch 2 when 0 < x <= = Xn_

E1 d2y -
dx2 Mo + Vox

/o _rxdY___r= Xr i dx + V o -- dx
_x _o E-_ EI

C£ /of:Yr : Mo dx i dx + Vo Xr dx x dx
EI EI

The double integrals can be reduced to single integrals by integrating

by parts, that is,

for_f0_ foX foX r x dx
r I dx_

= Xr E-_ E1

and

/o/o /o Cr x r x dx_ dxX _

dx _ dx = x r E1 E1

By making these substitutions in Yr and noting that

Yr

M 0 = PX n V0 = -P -_ = _r,n



2O

then,

four -(Xnr>foXrXnXrfoXrC_r,n = _ + x x 1

(valid only when xn ->_Xr)

(23)

By using the following definitions,

o 7o xr fo xr x2
Xr i dx = _r x dx = _r -- _r

E-_ E-_ EI dx =

the GT, n coefficient becomes

cUr,n = _r - (Xn + Xr)_r + XnXr_r (when n >= r) (23a)

Equation (25a) is the equation for the deflection influence coeffi-

cient of a beam cantilevered at x = 0 due to typical beam flexure only.

Equation (23a) is expressed in the matrix form

+ - x (23b)

(valid when n >= r)

According to Maxwell's reciprocal law, the coefficients when n < r can

be found immediately, since

_r, n = _n, r

TherefOre equation (23b) is a symmetrical matrix.

Deflection influence coefficients due to Joint rotation.- In many

fabricated structures the beam analogy might not be adequate to describe

local points of high rotation which result from joints or other geometric

characteristics. It is therefore desirable to include in the overall

influence coefficients terms to allow for slope discontinuities such as

those illustrated in the following sketch:
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//

Pn

Xn __
Joint i-__ -_-_"

Xr _-_

Sketch 3

The rotation at the Joint will be defined as a linear function of the

moment, that is

7 = _uPn(x n - Cu)

The deflection at x = x r due to v such Joint rotations resulting

from a unit load at x = xn is

V

8rjn = _ Ku(X n - Cu) IXr - c_

u=l

(24)

,_e,e,_eproduct('n-_u)(x,-_u)undert_esu=at_on_s_ons_ere_
to contribute to the sum only when

Xr, X n >-_ c u

Equation (24) can be expressed as the sum of v

one for each value of u, that is;

--_n {lli<x _ {i_I

where

separate square matrices,

(when Xr, xn > cu)

(25)

8(u): o
r_ n

(when Xr, xn < cu)
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Since the matrix is symmetrical, that is, _.u(] = 8"u'(] only one-half
°r, n n, r'

J _

the elements need be computed• The typical appearance of the 5(u)
r,n

matrix is

r

--_n

0 0 0

0 0 0

0

0 0 0

• . • • . • . • 0

. 0 0 0 ..... 0

Rows where x r _ cu

.....

Total deflection influence coefficients.- Addition of the structural

flexural influence coefficients and the Joint rotation deflection influ-

ence coefficients results in the total deflection influence coefficients

ar, n. Recalling that a structure might possess v Joints, then

r, = , + _r,n_ + _r,_ + " " + _r3_

The _r,n matrix is the deflection influence coefficient matrix and is

symmetrical about the principal diagonal, thus

ar, n = Sn, r
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Slope Influence Coefficients

Mode slopes are of fundamental value in many other studies, partic-

ularly those involving airloads on the beam. They are conveniently com-

puted by use of slope influence coefficients as was previously demon-

strated by equation (21). As was the case of the deflection influence
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coefficients, two contributions to the mode slopes are considered: the

slope due to elementary beam flexure, and the effects of a finite rota-

tion at a local point.

Slope influence coefficients due to beam flexure.- Let Vr, n be

the slope at x = xr due to a unit load at x = xn due to beam flexure

when cantilevered at x = 0. Then, from inspection of the following

sketch:

L

i

9
3
3

S o

V o

_x

x n

P

Sketch 4

it is found from summing moments about x = xo

Mo - M r - Px n = 0

and summing vertical forces

Vo+P=O

The moment at x in the span where 0 <= x <= Xr, is

Mx = M o + Vox = Mr + Px n - Px = Mr + P(x n - x)

and the moment at x in the span where xr <= x <= Xn, is

Mx = Mo + Vox- Mr = P(xn- x)

The total strain energy in the stressed system is

/oXr r + P(Xn- x Xn x - x)_ 2U = 2EI dx + I
_r

dx
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The slope at x = x r due to the load at x = xn is

8U = fO xr dx

_ Mr+ P(x n - x)

er, n 8M r EI

from which the influence coefficients are obtained, that is,

foXr (xnEi dx = Xn F --dx- fO -- dx

_er, n _ x) Xr 1 Xr x

Vr, n = 8p _ 0 EI EI

(valid when r _ n)

Since the slope influence coefficient Vr, n # Vn, r,

Wn, r for r > n must also be expressed.

the values of

M o

VoI

F

XnJ
Xr

(27)
L
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Sketch 5

From inspection of sketch 5 it can be seen that the moment at x in

the span where 0 __ x <= xn is the same as for the preceding case, that
is

Mx = Mr + P(xn - x)

The moment at x in the span where xn _ x _ xr is

Mx = M o + Vox + P(x- Xn) =M r

The total strain energy in the stressed system is then

foxn fXr Mr2dxU = _Mr + P(xn- x)]2 dx +

2EI Xn 2.EI
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The slope at x = xr due to the load at x = xn is

fO _ xr MrdX

8U _ Xn EMr + P(x n - x)_ dx +

er, n - _M r EI Xn EI

L
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3

from which the influence coefficients follow

_0 xn

80r, n (x n - x)

Vr, n- _ - _ _0 xn dx - f0 xn dx

i x

dx = xn EI EI = Vn, n

(valid when r _ n)

This result is as would be expected, that for M r = 0, the slope out-

board of P, where x r > Xn, is constant at all points and equal to the

value at xn. This result simplifies the problem of determining the

matrix coefficients. It simply means that the coefficients in
Vrj n

each column below the diagonal have the same values as their diagonal

values. This is illustrated as follows:

(28)

i ---_n

r Vl, i

v2, i

v3,1

Vl,2 Vl, 3 • . . Vl, p_ I

v2, 2 v2,5 " " " V2,p-i

v3,2 v5,3 " " " v3,p-i

Vr, l Wry2 • . . Vr, p. 1

Vp-l,l Vp-l,2 Vp-l,3 • . . Vp-l,p-i

Vl, l Vl, 2 Vl,3 • . . Vl, p_ I

Vl, l v2,2 v2,3 • . . V2, p_ I

Vl, l v2,2 v3, 3 v5,4 • . . V3, p_ I

Vl, l v2,2 V_ 3 V4,4 • . . V4, p_ 1

Vl, l v2,2 v5,3 • . . Vp_l,p_ 1

(28a)

Again, using the notation

fO xr-_-I dx = _r
K[ fO xr x--dx = _rE1
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the influence elements can be expressed as

Vr, n = Xnqr - _r

Vr, n = Vn, n = Xn_m - _n

and in matrix notation,

(r <
(r>n

(28b)

\

Vn, n

\

\

\

\

\
\

\

\

qlXl qlX2 _ix3 - . . qlXp_l

_2x2 q2x3 ... q2x.p.__

q3x3 q3x4 • . q3Xp_l

qlXl q2x2 q3x3 _p-lXp-i

I i _i _I _iII <

_i _2 _2 _2 #2
Symmetrical about diagonal

1 _2 _3 _3 _3 _3<-H _'-_

- . ii _r,n = _n,n = _n,rii _2 P3 - • _m-

(28c)

When the integrals qr and _r have been obtained, the Vr, n

matrix is easily generated in the matrix form of equation (28c).

Slope influence coefficients due to _oint rotation.- It is desir-

able to include in the slope-influence-coefficlent equation a term to

allow for local rotations. Let _r,n be the slope at x = x r due to

a unit load at x = x n considering an elastic joint rotation such as

that illustrated in the following sketch.
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L

L

Xn

X r

Sketch 6

The moment at the Joint x = cu due to the load Pn is

Pn (Xn - c_

The rotation at the Joint will be defined as a linear function of the

moment, that is,

 u n(Xn-
v such Joint rotations resulting from a unitThe slope at xr due to

load at xn is

V

_r,n = _ _u(Xn- c_ (29)

u=l

where the individual bracketed terms (xn - Cu) under the summation are

included only when Xn, xr > cu.

Equation (29) can be expressed as the sum of

matrices, one for each value of u.

-.@n (l_<x_ (i_

(u) ,_u Cu
r , =

v separate square

(valid when Xn, xr > Cu) (29a)

and

_(u)= o
r, n (when Xn, x r _ Cu)
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where all negative elements of the transpose are taken as zero, and all

rows when xr _ cu are to be replaced by zeros.

If a joint coincides with a discrete mass, observing these state-

ments of validity will yield the slope just to the left of the discon-

tinuity resulting from the joint. The magnitude of the discontinuity

can be readily computed from the product of the joint rotation factor

times the moment at the joint given by equation (22).

The typical appearance of the [.u.(_ matrix is
_r,n

----_ n

I-0 0

r

0 0

,

0

Rows where xr <= cu

oJ• 0 0 0

0 rows are the same

0 0 0 0 '_I"

______2 _Xn _ cu, where Xr, Xn > cu

Columns where xn <= cu

Total slope influence coefficients.- By recalling that n,

the sum of the flexural coefficients and the joint rotation coefficients,

the total slope influence coefficient for a system of v elastic joints

is

(30)

Equation (30) will yield the values of the slope influence coeffi-

cients On, r"

L
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3
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Evaluation of Integrals With Treatment of Discontinuities

The i__ function in the 8r, _r, and _r integrals is for most
EI

practical problems a highly discontinuous function, and therefore a

numerical form of integration is generally expedient. A system which

is convenient for tabulation and readily adaptable to automatic digital

computers is outlined as follows:

o

Li

J
r

y Y5 16/C_

=0

--0

_ X

=0

y YII YI3

J:9 J:13

r=l r=2

/

/

J

i i |

Sketch 7.- Typical curve to be integrated.

The _r, _r, and _r integrals are definite integrals and need to be

evaluated for all designated values of r. In practical cases the

integran_s of 8r, _r, or _r should be described at many intermediate

points to the r subscript system. By introducing a J subscript

system for intermediate points and letting Jr be the value of J at

the rth station, then from inspection of the preceding sketch the area

between J = 0 and J = Jr is

r

v 0 2
J=l

(31)

Notice in sketch 7 that each discontinuity is described with two

ordinates and the stations where there are no discontinuities are
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defined with only one ordinate. The discontinuity can be considered
simply as two adjacent stations with a spacing that approached zero.
Thus, no special treatment need be given discontinuities except that
the data be supplied with two ordinates at a discontinuity with each
having the same x value. Therefore, in equation (31), (xj - xj.1)
across a discontinuity will be zero and no changewill occur in the
integral. As an illustration, a listing of stiffness data and the desig-
nation of integration limit for evaluating 8r, _r, and _r for a
typical research launch vehicle is furnished as table I. The engineer
should adequately describe the Yj function to minimize numerical inte-
gration errors and to represent better the actual physical problem.

Equation (31) is sufficient for evaluating the qr, _r, and

integrals by letting the function Yj represent the integrands
i x x2
_, _, and _, respectively.

_r

L
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GENERAL DISCUSSION AND RESULTS

In the foregoing discussion the equations for obtaining the natural

mode data of a free-free structure have been derived and presented. A

general discussion of the problems encountered in the application of

the equations is presented in the following paragraphs and two example

solutions are included to illustrate the method. Results of a study to

ascertain the accuracies of the calculated natural frequencies and mode

shapes and their dependence on the number of masses employed are also

furnished.

Choice of the x Origin

The selection of the origin of the x coordinate at the location

of mo was based upon several factors which primarily arose from past

applications of the method to multistage rocket vehicles. For multi-

stage vehicles where it is desired to obtain the frequencies and modes

for t_he combinations of stages, it at first appears expedient to choose

the x origin at or near the nose of the uppermost stage. This choice

permits the use of input data developed for the combined stages for the

cases of fewer stages. However, this choice of the x origin, while

being most efficient from a work standpoint, has an inherent disadvan-

tage of reduced accuracy. Because the tip of the vehicle is usually

the region of greatest flexibility and the influence coefficients and

boundary values, Yo and eo, are referenced to the x origin, the
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choice of the origin at the nose introduces unnecessarily large boundary

corrections (y o and 8_-- which reduce the accuracy and sometimes affect

the numerical solution for the higher modes. These problems can be ellm-

inated in most cases by choosing the x origin at the more rigid end of
the vehicle.

In cases where the vehicle is already constructed at the time of

analysis, the choice of the origin at the base of the vehicle in many

cases has a second advantage of permitting direct measurement of the

influence coefficients. Since the coupling hardware for combining the

stages can in many cases be used for mounting the missile on a bed plate

or back stop, the influence coefficients can be directly measured by

using simple dial gages and moderate applied forces. On the other hand,

the average rocket vehicle could not be readily supported as a cantilever
from its nose.

Locations of Mass Stations

It has also been observed that the positions of the mass stations

should be determined by giving primary consideration to the purpose for

which the mode data are likely to be used. Experience has indicated that

to minimize the reworking of input data, the selection of mass stations

should be strongly influenced by the aerodynamic-load distributions.

For example, if the influence coefficients and associated modal data

are to be employed for gust response studies, it is important that the

reference stations be logically located to represent the points of large

localized aerodynamic lifting loads. Likewise, it is desirable to choose

stations at the centers of pressure of lifting appendages.

Order of the Characteristic Matrix

The selection of the number of discrete masses to represent the

continuous system will establish the order of the matrix solution. A

system of p masses will necessitate the solution of a matrix of

order p - 1. The number of masses used should be based primarily on

the accuracy desired for the highest mode to be extracted and the

available computing capability to handle large matrix iterations.

The results of a study of the influence of the number of masses on

the errors in frequencies and mode shapes of a uniform free-free beam

are presented in figures 1 and 2. The method derived herein for the

cases treated yielded frequencies higher than the comparative classical

solutions. The increase in frequency over the comparative classical

solution for the case of the uniform beam is shown in figure I as the

percentage error due to the discrete mass representation. An inspection
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of a cross plot of these data for a 1-percent error shows a close corre-
lation between the data and a simple analytical expression. Consequently,
it is suggested that an error in frequency not greater than 1 percent
can be maintained by the use of the following approximate rule:

p = 13_ (i <=n <=5)

where n is the numberof the highest modedesired and p is the num-
ber of masses to be used in representing the system. The discrepancies
between the computedmodeshapes and the classical mode shapes are shown
as figure 2. These data showthe largest of the errors between like
modesat the points of the maximumdeflections. The modal differences
were determined after alining the two comparative curves to yield the
least possible error by the method of least squares. The comparison
was madestrictly on the basis of the agreement between the shapes of
the computedmodesand the classical modesfor the free-free uniform
beam. In order to provide a wide freedom in alining the computedand
comparative data, the classical modeshape was permitted to be trans-
lated and rotated as necessary in the alinement to provide a minimumto
the sumof the squares of the differences between the shapes. The ref-
erence curve was expressed as

L
1
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where a, b, and c are coordinates permitting a wide freedom in the

placement of the comparative function qi, and _(xi) is the classical

modal deflection at x i used as a measure of the accuracy.

An inspection of figure 2 shows that errors in mode shape not in

excess of 1 percent through the third mode can be expected with the use

of 21 discrete masses in the solution.

It should be recalled that the analysis of the errors due to the

number of masses used is applicable specifically to the uniform beam,

yet these data are included to be used as a guide in working with

unsymmetrical beams and are felt to be indicative of the sensitivity
of the method to the number of masses used.

Numerical Integration Errors

An investigation of the errors associated with the integration

process given in the section entitled, '_valuation of Integrals With
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Treatment of Discontinuities" has also been made. The variations in

the natural frequencies of a 26-mass representation of a uniform beam

were computed for evenly spaced EI intervals numbering 25, 50, lO0,

150_ and 200; and the resulting errors are recorded in figure 3. It is

interesting to note that the integration errors introduced by the trape-

zoidal process tend to counteract the errors introduced by the discrete

mass analogy. In the data of figure 3, the root-mean-square values of

the errors for the set of five modes show that the optimum compensation

of errors for the set of modes is experienced for the case studied with

50 integration intervals. Extending the integration intervals to 200

or more will virtually remove all significant integration errors. This

is apparent in figure 3 by the fact that the curves approach a constant

value for the larger number of integration intervals. The integration

error becomes of decreasing significance as the number of masses are

reduced by virtue of its becoming of secondary importance in comparison

with the increasingly significant error associated with lumping.

The data for the curves of figure i were computed using i00 evenly

spaced integration intervals. From the indications of figure 3, it is

apparent that some shifting of the cf values of figure i would occur

with change in the number of integration intervals. This shifting is

of only practical significance when dealing with errors of i percent or

less. The sensitivity of the data of figure i to integration intervals

is noted by the comparisons of cf for I00 and 200 interval integrations

given on the figure for p = 26. The comparison suggests that no major

changes in error would result due to increasing the number of integra-

tion intervals beyond i00.

Slope Discontinuities

When flexibilities exist of the nature of local joint rotations,

the mode slopes will exhibit discontinuities at each joint of the magni-
tude of

= _U_U

where _u is the joint rotation constant at the joint u, Mu is the

mode moment at u, and 7 is the magnitude of the slope discontinuity.

In the event of a joint occurring at one of the mass stations, the

slope for the station is then double valued, having one magnitude just

to the left of the station and one value to the right. The foregoing

equations have been designed to yield only the slope to the left of
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the joint in cases where the joint location and station positions are

coincident. In order to determine the slope to the right, the magnitude

of the discontinuity is readily determined by the above equation for 7.

This treatment of discontinuities is clearly illustrated in figure 4.

Shear deformations will also yield slope discontinuities in struc-

tures possessing discontinuities in shear stiffness. If extreme accuracy

is required in the definitions of mode slopes and if shear deformation

is thought to be a significant contributor to deflection, then the sub-

ject method should either be extended to include shear effects or be

discarded in favor of methods more suitable for treating secondary

influences.

NUMERICAL
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Two numerical illustrations of portions of the foregoing deriva-

tions are submitted in order to show more clearly the procedures and to

demonstrate the simplicity of the method presented. A solution of the

classical case of the free-free vibration of a uniform beam is given

and a detailed application of the method to a typical rocket vehicle

is shown.

Free-Free Uniform Beam

Consider the following representation of a uniform beam of total

mass m and overall length L.

L_ L _3

IL 0 EI

i_m-- 1 nth

T ml mn / _m_-l = m_
_ p

Sketch 8.- The p mass system of a uniform beam.

For the equally divided span, the six segments are represented by six

equal discrete masses (p = 6), thus

m
mn = _

6
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xn = L n
6

= L(p- I)= __5T,
2p 12

L

1

9
3
3

_2 _

5

mnXn 2

5

0

_2 _ 55L 2 2_L 2 _ 35L 2

6 ×36 144 432

and

Utilizing the above quantities and relationships, the various matrices

of equation (i0) can be evaluated and result in the following expressions.

=3

[11[m4=6l! 1
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Wlth the preeedlngmatrlces, the premultiplier of the _r,n matrix of

equation (lO) can be written

1

210

_2

148 -44 -26 -8 l_

-44 172 -32 -26 -20

-26 -32 172 -44 -50

-8 -26 -44 148 -80

i0 -20 -50 -80 i00

L
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When EI can be assumed constant as in the case of the uniform

beam, equation (23) can be easily expressed analytically as

=l_Fxr x2 dx - (Xn + Xr)FO xr x dx + XnX r foXr dxl
c_r'n EI \u 0

n-

(n _ r)

and _r,n =_n,r when n < r. Upon evaluation of the previous equation

for the appropriate combinations of n and r between 1 and 5 and

arranging the results in matrix form, the following matrix for sT, n

results
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r

2 5 8 ll 14

5 16 28 4o 52

8 28 54 81 108

ii 40 81 128 176

14 52 lO8 176 29o

By assuming that the uniform beam is free of any local joint flexibili-

ties, then

CLr,n = _r,n

and the A matrix can be written as

148 -44 -26 -8 i0

-44 172 -32 -26 -2o

-26 -32 172 -44 -50

-8 -26 -44 148 -80

__i0 -20 -50 -80 i00

2 5 8 11 1_

5 16 28 40 52

8 28 54 81 108

ii 40 81 128 176

14 52 108 176 250

I

1

!
1

L3

35 x 66EI

q

-80 -492 -1020 -1502 -1932

-50 -444 -1530 -3044 -4704

-20 -186 -780 -2066 -3696

i0 72 180 172 -168

40 330 1140 2620 4620
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The solution of equation (i0) for the uniform beam is now reduced to

the matrix iteration of

35 × 66Eijv_r_ =

 2mL3

-80 -492 -1020 -1_02 -1932

-5o -444 -153o -3044 -4704

-20 -186 -780 -2066 -3696

lO 72 180 172 -168

40 330 ll40 2620 4620

The dominant characteristic value and characteristic function of the

preceding matrix equation will yield the first natural frequency and

first natural mode shape, respectively, of the free-free uniform beam

as represented by sketch 8. Proceeding by matrix iteration, six itera-

tions of an initially assumed modal column of 0.2, -0.2, -0.2, 0.2, and

1.Owill yield first mode amplitudes and frequencies to an accuracy

better than one-tenth of 1 percent of the fully converged results. The

mode shape and frequency so obtained are

L

1

9

3

3

35 x 6_I _ 2986.3

F "'

-o .13744

-0.86256

Yn = -0.862%

-0.13741

1.00000

= 23.385 E_
@

From equation (ll), Yo is
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1

1

i

i

1

-0.13744

-0.86256

-0.86256

-0.13741

i.00000
J

= 0.99997

Should a Joint of _i flexibility be considered at the third mass

(1)
position, for example, the 5r, n matrix would need to be considered.

By substituting the following into equation (25),

L LXr = r _=_n Cu =-3

it then becomes

0 0 0

0 0 0

8(1) _lL
r,n- _ 10 0 i 2 3

_ 0 2 4 60369

and the total influence coefficient with the Joint included would be
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Let

_r,n = c_r,n + °r,n

65=

2 5 8 ii IT

5 16 28 40 52

8 28 54 81 io8

ii 40 81 128 176

14 52 io8 i76 25o

_IEI62 - 4; the A matrix becomes

L

_IEI62
+

L

0 0 0 0 0

0 0 0 0 0

0 0 1 2 3

00246

00369

L

1

9
3
3

L3

35 x 66EI

148 -44 -26 -8 lO_

:i-44 172 -32 -26 -

-26 -32 172 -44 -

-8 -26 -44 148 -601

i

oji0 -20 -50 -80 i0

2 5 8 ii 14

5 16 28 40 52

8 28 58 89 120

Ii 40 89 144 200

14 52 12o 2oo 286

-80 -492 -1068 -1598 -2076

-50 -444 -2106 -4196 -6432

-20 -186 -1044 -2594 -4488

i0 72 228 268 -24

40 330 15O0 334o 5700

and the lowest natural frequency and mode shape obtained for the case

with the Joint are
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3_ × 66EI
3832.9mL 3

Yn =

2o6411 
- .14170

-1.oo995

-0.83797

-0.08112

1.00000

Yo = 1.07074

The mode slopes (dy/dx) are computed by equations (8) and (21).

With the utilization of the previously developed matrices, the boundary

values eo for the cases with and without joints are readily obtained.

For the case without a joint,

eo= 36
2986.3L

3T 1

, i

i

1

2 5

5 16

8 28

Ii 40

8 ii 14

28 4O 52

54 81 108

81 128 176

14 52 I08 176 2_0

1

i

1

i

1

For the case with the assumed _oint at x = cu = L/3,

__0.13744_

-o.862%

-o.862%

-0.13741

1.00000

_ 7.2472

L

e0 =

1

1

1

i

1

2 5

5 16

8 28

ii 40

8 ii 14-

28 4o 52

58 89 120

89 144 200

14 52 120 200 286

1

1

1

1

1
m

-- I-0.14170 TM

-1.oo995

-0.83797

-o.08112

i.0000%

= _ 7.6272
L
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The slopes at stations other than n = 0 require knowledge of the

slope influence coefficients. From equation (27), it may be observed

that the slope influence coefficients due to flexure only can be

expressed, when r _ n, as

SO xr 1 70XrdxVr, n = xn --dx - xEI EI

For the case of constant EI and when Xn _ Ln or Xr _ Lr
6 -T'

1 /Lh 2 r(2n - r) (r <_ n)

It should be noted, as previously mentioned, that the slope influence

coefficients are not symmetrical, that is, Vr, n _ Vn,r; yet Vr, n

when r _ n can be easily found by the relationship

Vr, n = Wn, n

The slope influence coefficients for flexure only for all combina-

tions of r and n from 1 to 5 are then given by

n

r

L 2

Vr,n 63EI

21 27

3 12 24 36 48

3 12 27 45 63

3 12 27 48 72

3 12 27 48 7B

For the case without Joints Pr,n = Vr,n" Since the solution for

the characteristic value mm2L 3 _ 35 × 66

EI 2986.3' the slopes for all stations

for the case without the Joint can be found from equation (21) as
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36

2986.3

+ 35

T

i

1

3 9 15 21 27

3 12 24 36 48

3 12 27 45 63
I

3 12 27 48 7_ I

J3 12 27 48 75

2 5

5 16

8 28

ii 40

8 Ii 14

28 4o 52

54 81 108

81 128 176

14 52 i08 176 250

i

I

i

i

1

 3744"

-o.862.56

1 -0.862.._

-o.13741

l.  .ooooo

_-5.9811

-2.3576

= I 2.3577

5.9811

L

In the event that the structure has a Joint, the Vr, n matrix

as shown previously must be combined with the _r,n matrix of equa-

tion (29a). As for the previous example, assume that a Joint exists

at the third mass station, station 2, which has a Joint constant of

al - 4L and position of cu L
62EI = 3" Then, from equation (29a), it

follows that

_T

2

.-_n r _

and since all coefficients are zero except those where n,r > 2,
then
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0 0 0 0 0

0 0 0 0 0

00123

0 0 i 2 3

0 0 1 2 3

Addition of these results to the Vr, n matrix results in the slope

influence coefficient matrix which contains both the flexural and Joint

contributions, namely,

---->n

r_ 9 15 21 27_
'3 12 24. 36

__3 12 31 53 75

3 12 31 _6 84

3 12 31 56 87

The mode slopes at all stations are then obtained from equation (21)

for the case with the joint as

3832.9

+ 35

m

li
3 12 24 36 48

L

1

i!

I

3 12 31 53 75

3 12 31 56 84

3 12 31 96 87

5 16

8 28

4 52 120 2oo 286

8 ii 14

28 40 52

58 89 120

89 144 20o

1

I

1

I

i

-0.14170

-1.oo995

-0.83797

-0.08112

1.00000

_6.5T13 _

-3.5431

2.9511

5.8297

6.8159
J

L

1

9
3

3
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The mode moments are readily computed from equation (22). Since the

moment equation is of elementary construction, it simply follows for

the case of the uniform and equally spaced masses that for the case

without a joint,

2986.3

i i i i i

i 2 2 2 2

1 23 33

12344

12345 !

1
I

II

1

i

i

iI
B

__0.13744 _

-0.86256

-0.86256

-0"1374: Ii. 00OOO

k.

15.19

28.29

28.29 1

and for the case with the assumed joint at x = cu = L/3

3832.9

i i i

1 2 2

1 2 3

1 2 3

1 2 3

i i

22

3 3

4 4

4 5

I

i

1

i

i

-0.14170"

-i. 00995

-0. 83797

-0.08112

1.00000

122" 66]3.6

.83

The mode shapes, mode slopes, and mode moments calculated above for the

illustrative case of a uniformbeam are displayed on figure 4 for both

of the cases; with and without the joint.

Modal Data for a Typical Space Vehicle

In figure 5 a 22 discrete mass representation is shown of an actual

space vehicle for which the first three natural modes, their slopes, and

moments are furnished as an illustration. The discrete masses are con-

sidered to act atthe center of gravity of the distributed masses which

they represent. From figures 1 and 2, it is estimated that the 22 dis-

crete masses should adequately represent the vehicle's distributed mass

to yield data on the first three lowest modes with errors of less than

1 percent.
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In table I the flexural coefficients EI are recorded in a con-

venient form for expediting the required integrations in accordance

with the trapezoidal process noted previously. One hundred flfty-six

integration stations are supplied to insure negligible integration

errors. All discontinuities are included by simply recording both quan-

tities for their common x value. The x values on table I marked

with a footnote are the locations of the mass centers and are the inte-

gration limits at which the integrals are required for the influence

coefficients. In table II, joint rotation constants and their locations

are furnished for the inclusion of Joint effects in the example vehicle.

The data of figure 5 and tables I and II constitute the necessary

input data to calculate the natural frequencies and other modal data for
the vehicle. From these data, the first three modes, their slopes, and

moments for the example vehicle have been computed and are furnished as

figures 6, 7, and 8. The data are given for the vehicle with and with-

out joint effects. The magnitudes of the discontinuities in the slope

curves are equal to the products of their respective Joint rotation con-

stants and bending moments. All of the modes have been normalized at

the 22nd mass and the moments are applicable to the unit deflection of

the normalized modes.

L

1

9
3
3

CONCLUDING EEMARKS

A coordinated matrix approach to the problem of free-free vibrations

of unsymmetrical beam-llke structures has been presented.

In the application of the method it has been found advantageous to

choose the origin of the independent variable x at the discrete mass

on the more rigid end.

The choice of the positions of the discrete masses should be dic-

tated by the ultimate use of the modal data to be obtained and in con-

sideration of the actual physical properties of the structure.

The number of discrete masses should be selected to maintain the

mode shape and frequency errors within the limits desired. From con-
siderations on uniform beams it is indicated that errors in frequency

of 1 percent or less can generally be maintained for the first five

modes by the use of the following approximate rule:

p = 13_



47

L

1

9

3

3

where n is the number of the highest mode desired and p is the num-

ber of masses to use in representing the system. Errors in the mode

shapes can generally be held to within 1 percent for the first three

modes by using at least 21 discrete masses in the solution.

Consideration of a uniform beam suggests that when employing trape-

zoidal integration in the influence coefficient calculations at least

_0 integration intervals should be used. Extending the number of inte-

gration intervals to 200 or more will virtually remove all significant

integration errors.

The method provides a means for the treatment of flexibilities such

as those associated with joints. Frequently the contribution of joints

to the flexibility of the system is a significant factor in the deter-

mination of the modal data.

In addition to mode deflections and frequencies, procedures are

outlined for obtaining the slopes of the mode shapes and the moments
associated with the modes.

The method is illustrated by applications to both a uniform beam

and a typical research launch vehicle.

Langley Research Center,

National Aeronautics and Space Administration,

Langley Air Force Base, Va., February 16, 1962.
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TABLE I.- _ STIFFNESS DISTRIBUTION OF A LAUNCH VEHICLE

x j, EI, x j, El, x j, EI,

J in. ib-in. 2 J in. ib-in. 2 J in. ib-in. 2

0 ao 1.485 × 109 53 174.86i I0.ii x 109 105 355.08 4.670 x 109

i 4.01 1.485 54 175.66 3.780 106 356.08 9.000

2 4.51 1.485 55 180.19 i 3.591 107 356.08 9.000

3 4.58 1.500 56 184.68 2.503 108 360.78 4. ]_2

4 6.51 2.420 57 185.18 3.384 109 365.47 4.51

5 7.01 8.580 58 a187.61 3.384 ll0 366.37 4.90

6 7.51 8.580 59 192.23 3.38_ ill 366.98 13.10

7 7.51 ll.T1 60 192.33 3.384 ll2 367.27 19.07

8 9.51 8.870 61 193.53 4.066 ll3 367.77 21.4

9 10.51 6.785 62 194.09 6.990 ll4 368.27 9.95

lO ll.T1 4.252 63 195.09 8.394 115 369.20 14.31

ll 13.53 4.252 6& 196.09 10.60 ll6 369.20 9.086

].2 18.53 4.252 65 197.09 8.870 ll7 373.47 3- 726

13 a23.53 4.252 66 198.09 6.276 ll8 a374.53 2.759

lh 28.53 4. 252 67 199.26 4. 252 ll9 378.47 2. 035

15 33.53 4. 252 68 203.53 4. 252 120 383.47 i. 854

16 38- 53 4. 252 69 208.53 4. 252 121 387.22 1.172

17 43.53 4.252 70 a212.53 4.252 122 387.22 -787

18 48.53 4.252 71 218.53 4.252 123 387.72 1.637

19 a53.53 4. 252 72 223.53 4. 252 124 387.72 2. 229

20 58.53 4.252 73 228.53 4.252 125 388.48 5.713

21 63.53 4.252 74 a234.53 4.252 126 388.48 4.486

22 68.53 4. 252 75 238.53 4.252 127 393.53 i. 2

23 73.53 4.252 76 243.53 4.252 128 a396.53 1.2

24 78.53 4.252 77 248.53 4.252 i29 398.53 i.2
25 a83.53 4. 252 78 253- 53 4. 252 130 403.53 1.2

26 88.53 4.252 79 a256.53 4.252 131 408.53 1.2

27 93.53 4.252 80 258.53 4.252 132 413.53 1.2

28 98.53 4.252 81 263.53 4.252 133 a418 •53 1.2

290 103.53 4.252 82 268.53 4.252 134 423.53 1.2108.53 4. 252 83 273.53 4. 252 135 428.53 i. 2

31 ai13.53 4.252 8_ ;-)78.53 4.252 136 433.53 1.2

32 118.53 4.252 85 a284.53 4.252 137 438.53 1.2

33 ]23.53 4.252 86 288.53 4.252 138 a443.53 1.2

34 128.53 4. 252 87 293.53 4. 252 139 448.53 1.2

35 133.53 4.252 88 298.53 4.252 140 453.53 1.2

36 138.53 4.252 89 303.53 4.252 141 458.53 1.2

37 e143.53 4.252 90 a308.53 4.252 142 a464.53 1.2

3_9 148.53 4.252 91 313.53 4.252 143 468.53 1.2153.53 4. 252 92 318.53 4. 252 144 473.53 1.2

40 158.53 4.252 93 323.53 4.252 145 478.38 1.2

41 163.26 4.252 94 328.53 4-252 146 478.53 4.06

42 164.36 6.784 95 a330.53 4.252 147 479.03 1.18

43 165.36 8.871 96 333.53 4.252 148 a482.53 1.18

44 a165.53 9.638 97 338.53 4.252 149 485.98 1.18

45 166.36 ll.71 98 343.53 4.292 150 489.98 1.40

46 167.48 9.913 199 348.53 4.252 151 490.48 .076

167.86 6.318 _I00 350.86 4.252 15 2 490.88 .076
170.26 2. 678 101 352.06 6.804 153 495.98 2.39

49 172.86 4.894 102 353.06 8.871 154 496.48 •076

50 173.66 9- 035 103 354.06 ii. 72 155 a499.53 •076

51 174.26 2. 648 104 a354.53 8. 276

52 174.28 2.905

aLocations of mass stations and limits of integration for equation (31).
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II.- JOINT ROTATION CONSTANTS, Ku

CU3

in.

4._80

167.48

17_.28

192.3o

355.08

366.98

388.48

4T8._

490.88

_U J

radians/in-lb

6.5o x lO-9

4.oo

20. O0

6.50

4.00

3.00

20. O0

20. O0

20.00
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9
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Figure i.- Percent error in natural frequency of a uniform free-free

beam as a function of the number of discrete masses used in the

solution.
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Figure 2.- Maximum error in the mode displacement of a uniform free-free
beam as a function of the number of discrete masses used in the

solution.
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beam represented by 6 discrete masses.



55

_513.98
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_47_.38 20
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16
_388.48

15

--355.08 14

13

12

II

I0

9

8

--187.61 7

6

5

4

3

J xj Mass
(in.) (Ib-sec2/in.)

155 499.53 .076166

148 482.53 .13705

142 464.53 .20725

138 443.53 .24306

133 418.53 .20518

128 396.53 .21632

118 374.53 .13547

104 354.53 .40405

95 330.53 .73135

90 308.53 .39005

85 284.53 .78010

79 256.53 .53632

74 234_53 .56070

70 212.53 .56070

58 187.61 .82484

44 165.53 .38428

37 143.53 .73135

31 113.53 .73135

25 83.53 .73135

Figure

2

0 0

-13.36

5-- Discrete mass representation
vehicle.

19 53.53 .73135

13 23.53 .75304

0 0 .64974

of a typical three-stage space
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Figure 6.- Natural frequencies and mode shapes for the first three nat-

ural modes of a three-stage launch vehicle.
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Figure 7-- Mode slopes for the first three natural modes of a three-stage
launch vehicle.
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derivative CN_ _ and axial-force coefficient CA, o with Mach number

for three-stage configurations.
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Figure 25.- Variation of rolling-moment coefficient C_ with Mach

number for three-stage configurations.
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